

"Loyalty Turns Customers into Relationships"

Fordham University Gabelli School of Business MSMI Summer 2021 07/21/2021

Meet the Team

Adam French
Co-Managing Director

Marien Abeli Co-Managing Director

Jingna Liu Data Director

Benyu Liu Project Manager

Ruiqi Dong Research Director

JungYi Cheng Data Analyst

Yiqun Lou Data Analyst

Fee Hofmann Data Analyst

Weiya Han Data Analyst

Our presentation has seven sections:

- 1. Loyalty Customer Segments
- 2. Cluster and RFM Analysis
- 3. EU-to-US Cluster Model
- 4. Seasonality and Loyalty Analysis
- 5. Predictive Analytics
- 6. Dashboard for Management Metrics
- 7. Recommendations

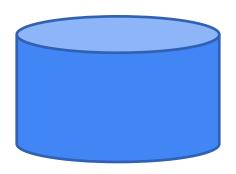
An Appendix is included at the end

Main Topics to Address

- How to segment the VELUX customers and who are the most active?
- 2. Are there any similarities or differences between European and US markets?
- 3. Are there any implications for the future of the reward program based on the performance in the past? Potential US partners?

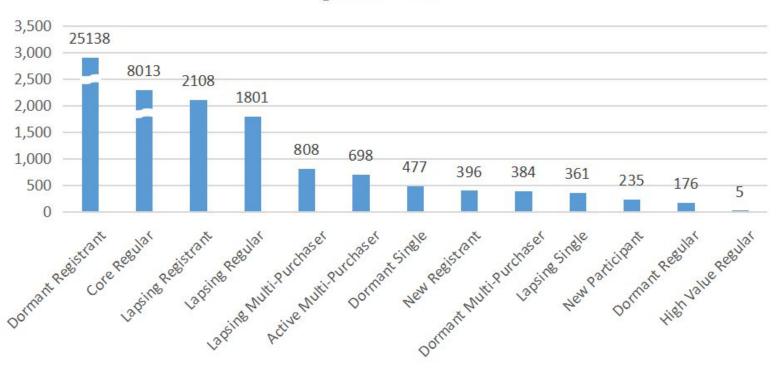
Summary of the Data Files we were given:

- 3 SQL Data files for the UK rewards program, Netherlands rewards program, and global data for the whole rewards program
- We converted these files into CSV files: 337 files in total with some files with over 50,000 rows of data
- We narrowed this down to 13 CSV files, which we were able to analyze in Excel, SPSS, and Tableau

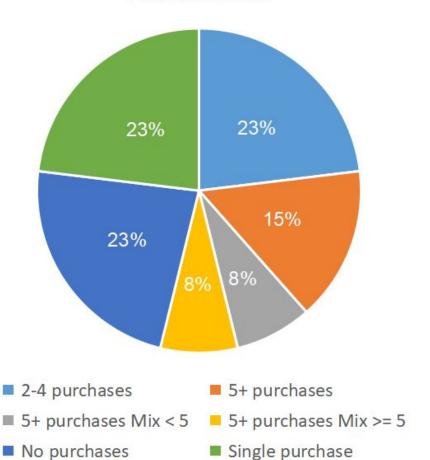


1. Loyalty Customer Segments

Segment Count



Purchase Level



Most customers made 4 purchases or less

What is significant about the main segments?

- Most of the existing customers are dormant registrant
- Nearly 75% of the customers purchased less than times
- Key accounts customers with great potential
- Less frequent customers who to push for loyalty

2. Cluster and RFM Analysis

Overall Plan

Project Goal

Make prediction of loyalty program performance in the USA using European Data

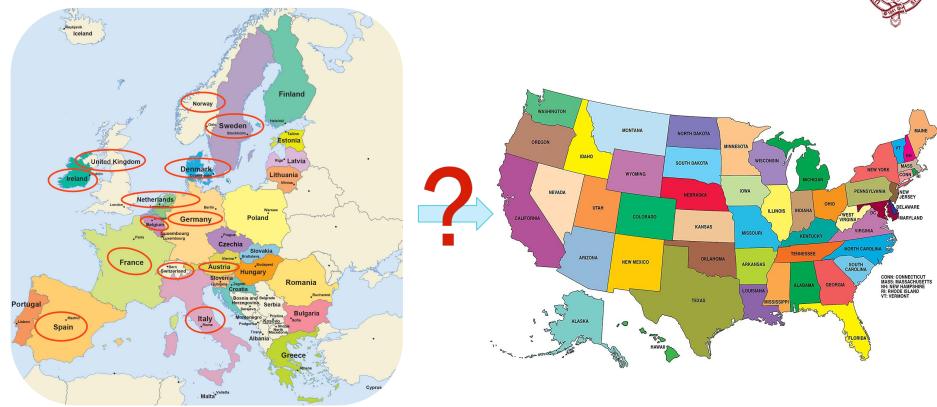
K-means Clustering

Regression Model

EU Region

Shared Regression Model

US Region



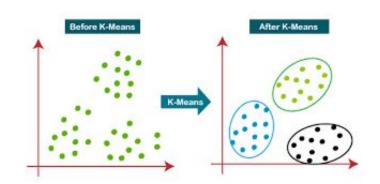
K-means Clustering Working Process

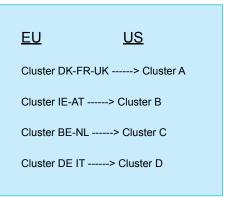
Collect EU,US Housing & Demographic datasets

K-means Clustering

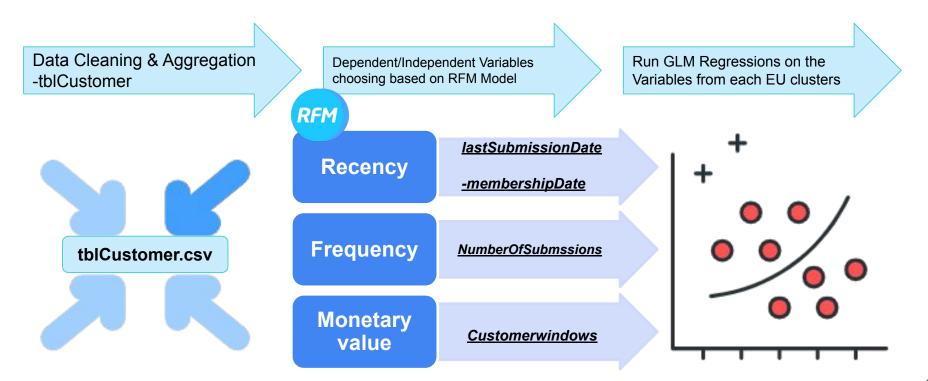
Match EU Clusters with US Clusters

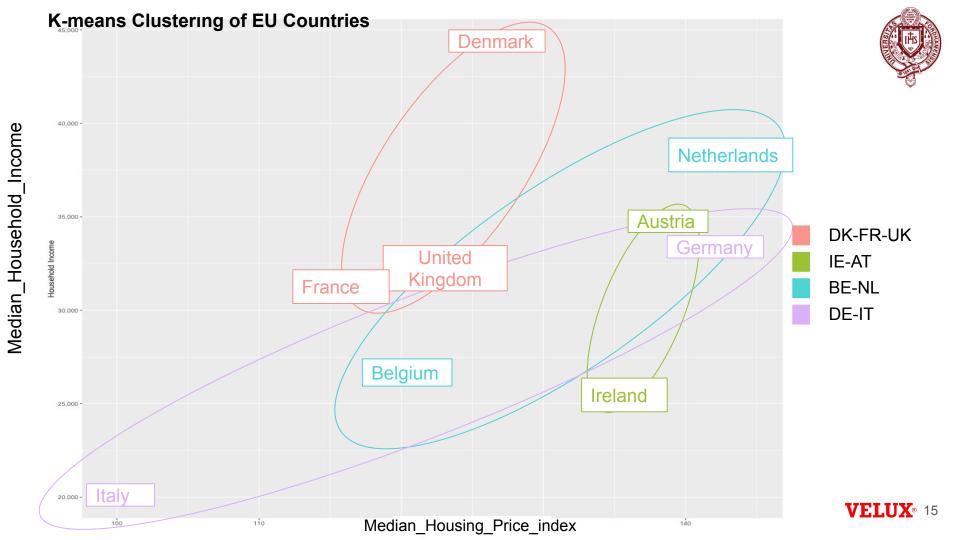
-Median housing price
-Median household Income
-Home ownership rate
-Median Property Tax
-Population Density
-Median Age
-Urban Population





Regression Model Working Process





3. EU-to-US Cluster Models

4 Significant Region Matches

<u>EU</u> <u>US</u>

Cluster DK-FR-UK -----> Cluster A

Cluster IE-AT ----> Cluster B

Cluster BE-NL ----> Cluster C

Cluster DE IT ----> Cluster D

<u>List of European clusters:</u>

- 1. United Kingdom, France, Denmark
- 2. Austria and Ireland
- 3. Belgium and Netherlands
- 4. Germany and Italy

List of American clusters:

- A. Alaska, Minnesota, Virginia, Utah, Illinois, North Dakota, Nebraska, Arizona, Kansas, Georgia, Idaho, Texas
- **B.** Maryland, New Jersey, Connecticut, Massachusetts, Rhode Island
- New York, California, Nevada, Washington, Colorado, Oregon, Hawaii
- D. Pennsylvania, Arkansas, West Virginia, Mississippi, New Hampshire, Delaware, Wyoming, Montana, Oklahoma, North Carolina, South Carolina, Montana, Indiana, Vermont, Missouri, Michigan, Maine, Iowa, New Mexico, Louisiana, Florida, Kentucky, Tennessee, South Dakota, Ohio, Wisconsin

RFM Analysis

Gamma Generalized Linear Model (GLM)

Dependent Variable

PointSpent

Independent Variables

Recency

lastSubmissionDate

-membershipDate

Frequency

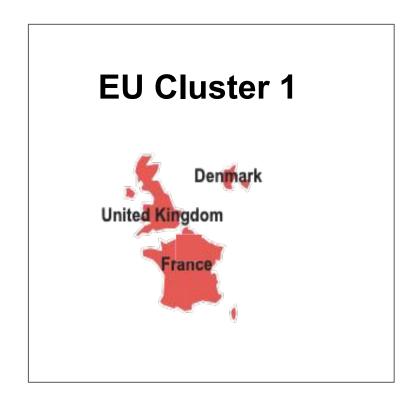
NumberOfSubmssions

Monetary value

Customerwindows

Customer **Segments**

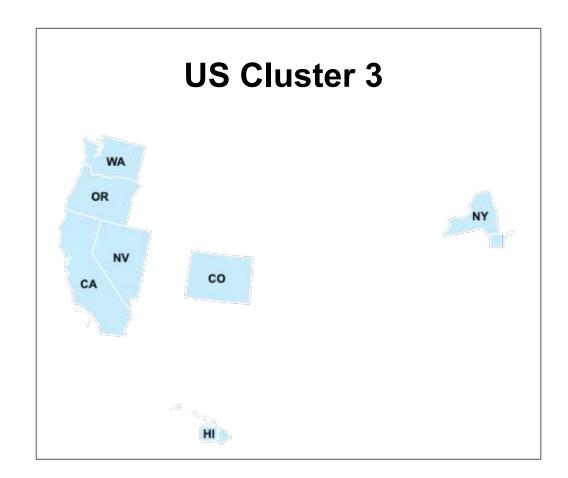
<u>segment</u>



Model 1

Variable Name	Slope Parameter	P-value	Significance
(Intercept)	5.52E+00	< 2e-16	***
segmentCore Regular	-2.52E-01	2.89E-01	
segmentDormant Multi-Purchaser	-1.00E+00	2.03E-03	**
segmentDormant Registrant	1.31E+00	7.02E-07	***
segmentDormant Regular	-5.26E-01	1.52E-01	
segmentDormant Single	-1.48E+00	1.46E-04	***
segmentLapsing Multi-Purchaser	2.25E-01	4.70E-01	
segmentLapsing Registrant	7.39E-01	6.61E-01	2
segmentLapsing Regular	4.18E-01	9.29E-02	
segmentLapsing Single	-4.42E-01	4.08E-01	
segmentNew Participant	-2.14E+00	1.33E-02	*
customerWindows	8.78E-05	4.60E-01	
numberOfSubmissions	1.53E-02	< 2e-16	***
Recency	1.65E-03	< 2e-16	***

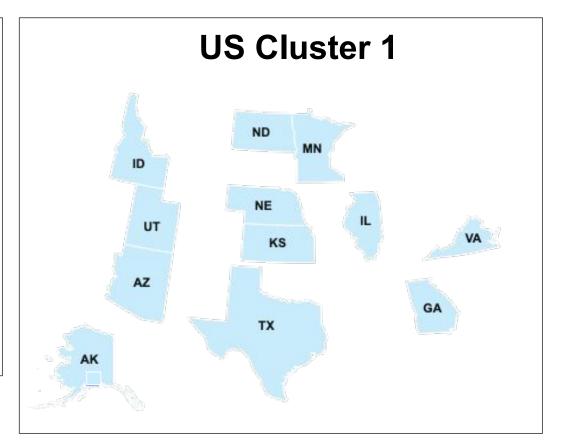
EU Cluster 2



Model 2

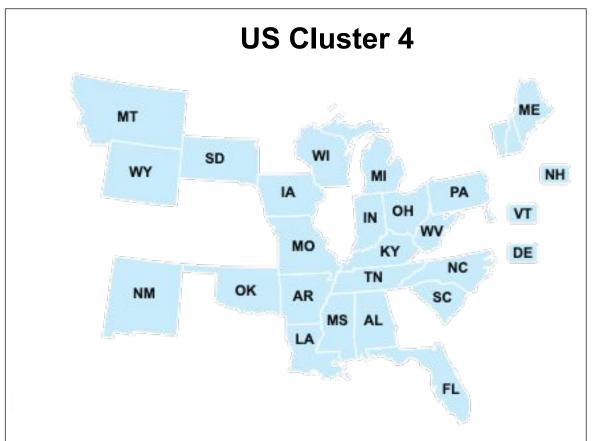
Variable Name	Slope Parameter	P-value	Significance
(Intercept)	5.2904963	< 2e-16	***
segmentCore Regular	0.7375051	0.06463	
segmentDormant Registrant	1.1193454	0.01235	*
segmentDormant Regular	0.8660828	0.27101	
segmentLapsing Multi-Purchaser	-0.0663918	0.89468	
segmentLapsing Regular	0.7770395	0.05548	
segmentLapsing Single	-1.9464567	0.00451	**
customerWindows	0.0003962	9.22E-05	***
numberOfSubmissions	0.0045705	8.31E-06	***
Recency	0.0008938	0.00091	***

EU Cluster 3 Netherlands Belgium



Model for Cluster 3

Variable Name	Slope Parameter	P-value	Significance
(Intercept)	4.517964	< 2e-16	***
segmentCore Regular	0.4990236	0.2099	
segmentDormant Registrant	0.8228453	0.0388	*
segmentDormant Regular	0.8136095	0.3017	
segmentLapsing Multi-Purchaser	-0.7328909	0.0936	
segmentLapsing Regular	0.5406218	0.1739	
segmentLapsing Single	-0.5461047	0.3822	
customerWindows	0.0032292	< 2e-16	***
numberOfSubmissions	0.0052054	3.37E-08	***
Recency	0.000844	8.68E-13	***

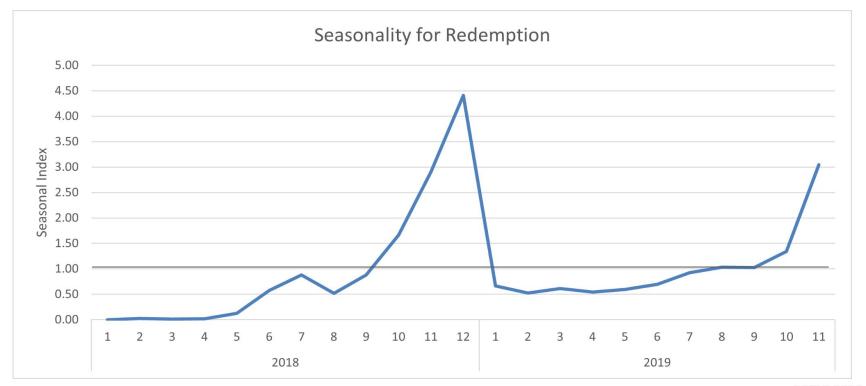


Model for Cluster 4

Variable Name	Slope Parameter	P-value	Significance	
(Intercept)	4.76E+00	< 2e-16	***	
segmentCore Regular	7.75E-01	< 2e-16	***	
segmentDormant Multi-Purchaser	-5.01E-03	0.9341		
segmentDormant Registrant	-8.68E-02	0.21475		
segmentDormant Regular	5.27E-01	1.93E-12	***	
segmentDormant Single	-4.54E-01	1.24E-11	***	
segmentHigh Value Regular	6.73E-01	0.00647	**	
segmentLapsing Multi-Purchaser	4.80E-02	0.23083		
segmentLapsing Registrant	1.50E-01	0.4707		
segmentLapsing Regular	6.43E-01	< 2e-16	***	
segmentLapsing Single	-4.75E-01	3.08E-15	***	
segmentNew Participant	-4.01E-01	4.01E-09	***	
segmentNew Registrant	-1.42E-01	0.42074		
customerWindows	1.05E-02	< 2e-16	***	
numberOfSubmissions	-3.14E-03	2.68E-09	***	
Recency	3.76E-04	5.76E-09 ***		

Seasonality and Loyalty Analysis

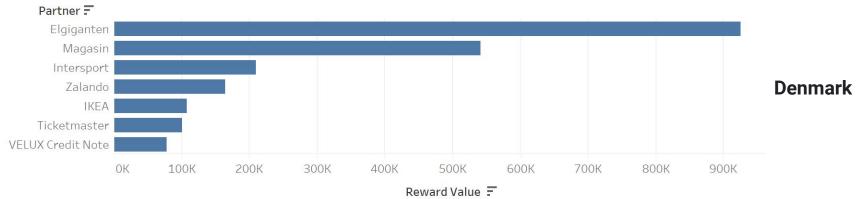
Not surprising: points redemption is seasonal

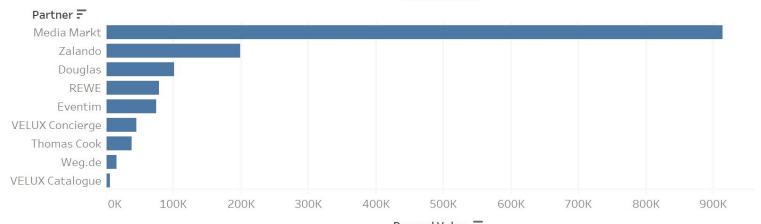


Five partners = 80% of the Points

Media Markt 974,765 Elgiganten 925,500	Zalando 605,915	Intersport 210,000	Decathlon 206,345	fnac 183,355
	541,400	bol.com 153,840	Media Markt Belgique 142,300	IKEA 122,500
		Ticketmaster 100,500	VELUX Credit Note 77,316	
		Douglas 100,460	Media Market	
		REWE 78,600		

Rewards Redeem Pattern Vary by Country





VELUX® 31

Germany

Results:

- 5 partners with high reward value
- 80/20 rule applies to partners
- Preference of each country is slightly different

Mågasin

Implications:

- Expand relationship with the high-value partners
- Find partners with similar potential

Rewards Forms

rewardType					
		Frequency	Percent	Valid Pe	Cumulative Percent
Valid		93	0.2	0.2	0.2
	0	2	0	0	0.2
	Amilon eGift	43459	92	92	92. 2
	Assistance Chantier	25	0. 1	0.1	92. 3
	Cashback Reward	8	0	0	92. 3
	Catalogue	1379	2.9	2.9	95. 2
	Concierge Reward	87	0.2	0.2	95. 4
	Digital Code	43	0. 1	0.1	95. 5
	Gift Card	2114	4. 5	4. 5	100
	VELUX Credit Note	6	0	0	100
	Total	47216	100	100	

Rewards forms are concentrated, too

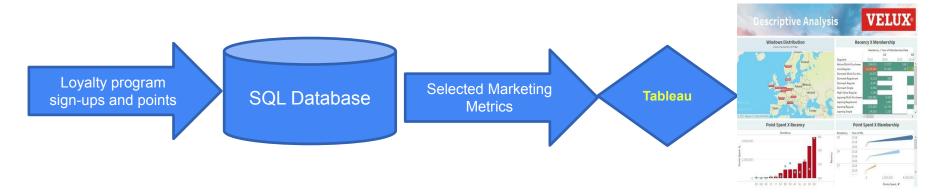
- The majority of the rewards are offered in the form of Amilon eGift
- Consumers preferences for rewards should be tracked
- Reward types can be diversified

F%2Fcdn.shopify.com%2Fs%2Ffiles%2F1%2F0053%2F6995%2F4422%2Fproducts%2Fe38bd83af578077b65a31424bd24d085_1200x.png% 3Fv%3D1583464919&imgrefurl=https%3A%2F%2Fwww.surffcs.eu%2Fproducts%2Fgift-card&tbnid=vKr0f9lkr1c_5M&vet=12ahUKEwji74nRu_TxAhX2z4sBHfgDAYEQMygoegUIARCkAw.i&docid=Rt32Y3CTf-m-xM&w=949&h=566&q=qift%20card&ved=2ahUKEwji74nRu_TxAhX2z4sBHfgDAYEQMygoeqUIARCkAw

5.

Dashboard for Management Metrics

Tableau Data Analysis Steps

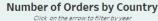


Metrics your marketing manager needs to know

- Current members, by segment and country
- Active members, by segment and country
- New members, where growth is happening
- Redemptions; segments in areas of key activity
- Loyalty members and participation vs seasonal goals

VELUX's Loyalty Program in European Countries

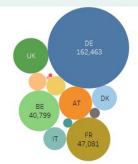
Descriptive Analysis



Click on the arrow to filter by ye

Year

(All)



197,428

127,103

103,843

Expand Red

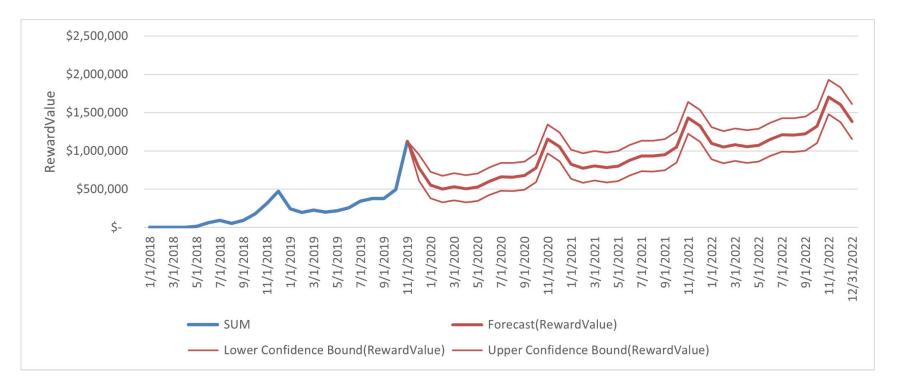
Dormant Regular

Dormant Multi-Purchaser

Performance by Segment

6. Predictive Analytics

Reward Forecasts for 2022



Estimated EU Monthly Redemption Values for 2022

Month	Lower Confidence Bound (RewardValue)	
1/1/2022	\$	1,309,343
2/1/2022	\$	1,260,250
3/1/2022	\$	1,292,891
4/1/2022	\$	1,269,472
5/1/2022	\$	1,290,093
6/1/2022	\$	1,368,298
7/1/2022	\$	1,428,253
8/1/2022	\$	1,428,372
9/1/2022	\$	1,447,532
10/1/2022	\$	1,549,312
11/1/2022	\$	1,930,815
12/1/2022	\$	1,830,095
12/31/2022	\$	1,610,927

7. Recommendations

When to Campaign

- Popular times of the year for purchases (Quarters 1 and 3)
- Popular redemption months
 - High redemption in **November** and **December** each year
- Who to partner with
 - Keep relationship with Auszahlung, IKEA, and VELUX Credit Note
 - Cultivate partners with high potential reward value
 - Value in **Electronics** and **Sports Apparel**
 - American brands: Best Buy, Staples, Dick's
- What to offer
 - Track consumers' preferences for Amilon eGift
 - **Diversify** reward types

Here is What We Leave You...

Marketing Area	Recommendations
1. Loyalty Program Segments	Build most valuable customer types Motivate less frequent members
2. European – US Marketing Model	Target selected state clusters
3. Partner Development	Expand electronics sector to US
4. Forecasts for 2022	Set goals and monitor real-time metrics with the dashboard
5. Measure and Monitor Progress in EU	Dashboard with real-time metrics

Thank You!

Appendix

European and American Clusters Matched

List of European clusters:

- 1. United Kingdom, France, Denmark
- 2. Austria and Ireland
- 3. Belgium and Netherlands
- Germany and Italy

List of American clusters:

- Connecticut, Maryland, Massachusetts, New Jersey, Rhode Island
- 2. California, Colorado, Hawaii, Nevada, New York, Oregon, Washington
- 3. Alaska, Arizona, Georgia, Idaho, Illinois, Kansas, Minnesota, Nebraska, North Dakota, Texas, Utah, Virginia
- 4. Arkansas, Delaware, Florida, Indiana, Iowa, Kentucky, Louisiana, Maine, Michigan, Mississippi, Missouri, Montana, New Hampshire, New Mexico, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, West Virginia, Wisconsin, Wyoming

Cluster Significance Tables


```
filter(residency %in% c("DK", "UK", "FR")))
Deviance Residuals:
            10 Median
-4.6199 -1.2732 -0.6948 0.0538 5.3217
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              5.268e+00 1.550e-01 33.994 < Ze-16 ***
segmentActive Multi-Purchaser 2.518e-01 2.372e-01 1.062 0.288517
segmentDormant Multi-Purchaser -7.499e-01 2.336e-01 -3.210 0.001346 **
segmentDormant Registrant
                             1.561e+00 1.376e-01 11.350 < 2e-16 ***
segmentDormant Regular
                             -2.746e-01 2.893e-01 -0.949 0.342568
                             -1.226e+00 3.167e-01 -3.871 0.000112 ***
seamentDormant Single
segmentLapsing Multi-Purchaser 4.770e-01 2.167e-01 2.201 0.027849 *
segmentLapsing Registrant
                             9.910e-01 1.669e+00 0.594 0.552713
seamentLapsina Regular
                              6.693e-01 1.051e-01 6.370 2.28e-10 ***
segmentLapsing Single
                             -1.900e-01 4.852e-01 -0.392 0.695400
segmentNew Participant
                             -1.885e+00 8.330e-01 -2.263 0.023732 *
customerWindows
                              8.779e-05 1.189e-04 0.738 0.460390
                              1.530e-02 1.134e-03 13.487 < Ze-16 ***
numberOfSubmissions
                              1.653e-03 1.651e-04 10.008 < Ze-16 ***
Recency
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 2.761788)
```

Null deviance: 4997.2 on 2257 degrees of freedom Residual deviance: 3556.7 on 2244 degrees of freedom

glm(formula = pointsSpent ~ segment + customerWindows + numberOfSubmissions +
Recency, family = Gamma(link = "loa"), data = customer_df_cleaned %>%

EU Cluster 1

Call: glmf(ormula = pointsSpent - segment + customer%indows + numberOfSubmissions + Recency, family = Gammo(link = "log"), data = customer_df_cleaned %>% filter(residency %in% c("AT", "IE"))) Deviance Residuals:

Deviance Residuals:
Min 1Q Median 3Q Max
-2.9846 -0.7793 -0.2486 0.2628 3.0580
Coefficients:

Number of Fisher Scoring iterations: 14

AIC: 37217

Estimate Std. Error t value Pr(>|t|) (Intercept) 6.0280014 0.2705502 22.281 < 2e-16 *** segmentActive Multi-Purchaser -0.7375051 0.3982894 -1.852 0.06463 . seamentDormant Registrant 0.3818404 0.2402927 1.589 0.11264 segmentDormant Regular 0.1285777 0.6840815 0.188 0.85098 segmentLapsing Multi-Purchaser -0.8038968 0.3243525 -2.478 0.01350 * seamentLapsina Regular 0.0395344 0.1214613 0.325 0.74494 segmentLapsing Single -2.6839618 0.5649177 -4.751 2.61e-06 *** 0.0003962 0.0001005 3.940 9.22e-05 *** customerWindows 0.0045705 0.0010154 4.501 8.31e-06 *** numberOfSubmissions Recency 0.0008938 0.0002680 3.336 0.00091 ***

EU Cluster 2

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gamma family taken to be 0.9232228)

Null deviance: 791.71 on 541 degrees of freedom Residual deviance: 448.33 on 532 degrees of freedom AIC: 8828

Number of Fisher Scoring iterations: 22

qlm(formula = pointsSpent ~ segment + customerWindows + numberOfSubmissions + Recency, family = Gamma(link = "log"), data = customer_df_cleaned %>% filter(residency %in% c("BE", "NL"))) Deviance Residuals: 10 Median -4.2087 -0.5763 -0.1124 0.2970 2.9739 Coefficients: Estimate Std. Error t value Pr(>|t|) 5.0169876 0.1206051 41.598 < Ze-16 *** seamentActive Multi-Purchaser -0.4990236 0.3977807 -1.255 0.209943 seamentDormant Registrant 0.3238217 0.0979145 3.307 0.000975 *** segmentDormant Regular 0.3145860 0.6854266 0.459 0.646359 segmentLapsing Multi-Purchaser -1.2319145 0.1961100 -6.282 4.96e-10 *** segmentLapsing Regular 0.0415982 0.0569841 0.730 0.465561 segmentLapsing Single -1.0451282 0.4932565 -2.119 0.034347 * customerWindows 0.0032292 0.0002123 15.213 < 2e-16 *** numberOfSubmissions 0.0052054 0.0009355 5.564 3.37e-08 *** 0.0008440 0.0001165 7.243 8.68e-13 *** Recency Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for Gamma family taken to be 0.4647025) Null deviance: 1311.96 on 1022 degrees of freedom Residual deviance: 528.58 on 1013 degrees of freedom Number of Fisher Scoring iterations: 17 glm(formula = pointsSpent ~ segment + customerWindows + numberOfSubmissions + Recency, family = Gamma(link = "log"), data = customer_df_cleaned %>% filter(residency %in% c("IT", "DE"))) Deviance Residuals: Min 1Q Median -5.6050 -0.4164 -0.0248 0.2484 2.9300 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.534e+00 3.089e-02 179.166 < Ze-16 *** segmentActive Multi-Purchaser -7.749e-01 2.961e-02 -26.169 < 2e-16 *** segmentDormant Multi-Purchaser -7.800e-01 5.631e-02 -13.851 < 2e-16 *** -8.617e-01 6.380e-02 -13.506 < 2e-16 *** seamentDormant Registrant seamentDormant Regular -2.485e-01 7.111e-02 -3.494 0.000478 *** segmentDormant Single -1.229e+00 6.328e-02 -19.417 < Ze-16 *** segmentHigh Value Regular -1.025e-01 2.450e-01 -0.418 0.675734 segmentLapsing Multi-Purchaser -7.270e-01 3.187e-02 -22.811 < 2e-16 *** segmentLapsing Registrant -6.246e-01 2.066e-01 -3.023 0.002514 ** -1.325e-01 2.237e-02 -5.922 3.34e-09 *** segmentLansing Regular -1.250e+00 5.530e-02 -22.597 < 2e-16 *** segment ansing Single -1.176e+00 6.336e-02 -18.560 < 2e-16 *** segmentNew Participant -9.168e-01 1.748e-01 -5.244 1.62e-07 *** segmentNew Registrant customerWindows 1.049e-02 1.612e-04 65.098 < 2e-16 *** numberOfSubmissions -3.135e-03 5.262e-04 -5.958 2.68e-09 *** 3.759e-04 6.447e-05 5.831 5.76e-09 *** Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for Gamma family taken to be 0.2984257) Null deviance: 7291.8 on 6811 degrees of freedom Residual deviance: 2511.8 on 6796 degrees of freedom

Number of Fisher Scoring iterations: 22

EU Cluster 3

EU Cluster 4

Client Research

The target groups are categorized according to the role they play and how they influence VELUX.

- Primary demand: End-users, Building owners
- Commercial demand: Developers, Installers, Dealers, Specifiers
- Business environment: Media, Political influencers, Partners, Employees
- Major competitors: Duratex, Saint Gobain North America, Knauf, and CNBN

VELUX has production sites in 11 countries and sales companies in 40 countries

Five partners = 80% of the Points

Auszahlung	1865.63
IKEA	1424.42
VELUX Credit Note	1197
Elgiganten	872.29
Ticketmaster	804